

PLANO DE ENSINO

1. Dados Gerais

• Disciplina: PPGEE3607 – Tópicos em Sistemas de Potência 1.

• Tema: Aplicações da Proteção Diferencial Numérica.

• Carga Horária: 60 horas (4 créditos).

• *Semestre:* 2025.2.

• Local e Horário: Sala de Aula do Espaço Sérgio Barroso – FT AT-31/12, Ter e Qui de 8h às 9h50min.

• Professor: Kleber Melo e Silva.

Departamento de Engenharia Elétrica – ENE, Sala B1-78/15.

Fone: (61) 3107-5510, email: klebermelo@unb.br.

2. Objetivo

 Apresentar os conceitos fundamentais da proteção diferencial numérica dos componentes de sistemas elétricos de potência.

3. Metodologia de Ensino

- Aulas teóricas expositivas utilizando recursos didáticos audiovisuais e quadro branco.
- Simulações de transitórios eletromagnéticos em sistemas elétricos de potência com o software ATPDraw.
- Simulações computacionais de algoritmos de proteção numérica microprocessada que vem sendo implementados nos relés em escala comercial.

4. Critérios de Avaliação

Os alunos serão avaliados mediante as atividades descritas na tabela a seguir.

Atividade	Descrição	Assunto	Data Programada
RS1	Relatório de Simulação 1	Algoritmos de Estimação de Fasores	16/09/2025
RS2	Relatório de Simulação 2	Proteção Diferencial de Transformadores de Potência	23/10/2025
RS3	Relatório de Simulação 3	Proteção Diferencial de Barramentos	24/11/2025
RS4	Relatório de Simulação 4	Proteção Diferencial de Linhas de Transmissão	15/12/2025

• A média final (MF) na disciplina será:

$$MF = \frac{RS1 + RS2 + RS3 + RS4}{4}$$

• Para ser aprovado na disciplina, o aluno deve ter MF maior ou igual a 5,0 pontos e presença igual ou superior a 75% de presença nas aulas teóricas.

5. Ementa

 Filosofia da proteção de sistemas elétricos de potência; Introdução à proteção numérica microprocessada de sistemas elétricos de potência; Transformador de corrente para serviços de proteção; Fundamentos da proteção diferencial numérica; Proteção diferencial numérica aplicada a transformadores de potência, barramentos e linhas de transmissão.

6. Conteúdo Programático

- 6.1. Filosofia da proteção de sistemas elétricos de potência
 - a. Tipos de relés: eletromecânicos, estáticos analógicos e numéricos microprocessados.
 - b. Funções e zonas de proteção.
- 6.2. Introdução à proteção numérica microprocessada de sistemas elétricos de potência
 - a. Amostragem de sinais analógicos.
 - b. Algoritmos de estimação de fasores.
- 6.3. Transformador de corrente para serviços de proteção
 - a. Circuito equivalente e diagramas fasoriais.
 - b. Erros de medição e o impacto no funcionamento da proteção.
 - c. Dimensionamento para serviços de proteção.
- 6.4. Fundamentos da proteção diferencial numérica
 - a. Tipos de relé.
 - b. Planos de representação.
- 6.5. Proteção diferencial numérica de transformadores de potência
 - a. Compensação de defasagem, relação de transformação e componente de sequência zero.
 - b. Bloqueio e restrição por harmônicas e pela componente DC de decaimento exponencial.
 - c. Unidades de fase e de sequência.
- 6.6. Proteção diferencial numérica de barramentos
 - a. Fundamentos da proteção diferencial de alta e de baixa impedância.
 - b. Lógica funcional da proteção de barramentos com topologia variável.
 - c. Lógica da proteção de falha de disjuntor.
- 6.7. Proteção diferencial de linhas de transmissão
 - a. Unidades de fase e de sequência.
 - b. Eliminação do efeito da corrente capacitiva.
 - c. Aspectos de comunicação e sincronização de dados.

7. Bibliografia

7.1. Livros

- a. ZIEGLER, G., *Numerical Differential Protection: Principles and Applications*. Berlin, Germany: Siemens, 2nd ed., 2012.
- b. PHADKE, A. G.; THORP, J. S., *Computer Relaying for Power Systems.* West Sussex, UK: John Wiley & Sons, 2nd ed., 2009.
- c. REBIZANT, W.; SZAFRAN, J.; WISZNIEWSKI, A., *Digital Signal Processing in Power System Protection and Control*. London, UK: Springer, 1st ed., 2011.
- d. SCHWEITZER ENGINEERING LABORATORIES, *Modern Solutions for Protection, Control and Monitoring of Electric Power Systems*. Pullman, US, 2010.
- e. ELMORE, W. A., *Protective Relaying: Theory and Applications.* New York, US: Marcel Dekker Inc., 2nd Ed., 2003.

7.2. Normas e Artigos Técnicos

- a. Proteção Diferencial de Transformadores:
 - i. IEEE PES POWER SYSTEM RELAYING COMMITTEE, *C37.91 IEEE Guide for Protecting Power Transformers*. New York, US: 2008.
 - ii. GUZMÁN, A.; ZOCHOLL, S.; BENMOUYAL, G.; ALTUVE, H. J., *Performance Analysis of Traditional and Improved Transformer Differential Protective Relays*. Schweitzer Engineering Laboratories, Inc., 2000.

- iii. GUZMÁN, A.; ALTUVE, H. J.; TZIOUVARAS, D., *Power Transformer Protection Improvements with Numerical Relays*. Schweitzer Engineering Laboratories, Inc., 2005.
- iv. GUZMÁN, A.; FISCHER, N.; LABUSCHAGNE, C., *Improvements in Transformer Protection and Control*. Schweitzer Engineering Laboratories, Inc., 2009.
- v. EDWARDS, B.; WILLIAMS, D. G.; HARGRAVE, A.; WATKINS, M.; YEDIDI, V. K., Beyond the Nameplate Selecting Transformer Compensation Settings for Secure Differential Protection. Schweitzer Engineering Laboratories, Inc., 2016.

b. Proteção Diferencial de Barramentos:

- i. IEEE PES POWER SYSTEM RELAYING COMMITTEE, *C37.234 IEEE Guide for Protective Relay Applications to Power Systems Buses*. New York, US: 2009.
- ii. GUZMÁN, A.; LABUSCHAGNE, C.; QIN, B.-L., Reliable Busbar and Breaker Failure Protection with Advanced Zone Selection. Schweitzer Engineering Laboratories, Inc., 2004.
- iii. ZOCHOLL, S. E.; COSTELLO, D., Application Guidelines for Microprocessor-Based, High-Impedance Bus Differential Relays. Schweitzer Engineering Laboratories, Inc., 2009.
- iv. BEHRENDT, K.; COSTELLO, D.; ZOCHOLL, S. E., Considerations for Using High-Impedance or Low-Impedance Relays for Bus Differential Protection. Schweitzer Engineering Laboratories, Inc., 2010.

c. Proteção Diferencial de Linhas de Transmissão:

- i. TZIOUVARAS, D. A.; ALTUVE, H.; BENMOUYAL, G.; ROBERTS, J., *Line Differential Protection with an Enhanced Characteristic*. Schweitzer Engineering Laboratories, Inc., 2004.
- ii. BENMOUYAL, G.; MOONEY, J. B., *Advanced Sequence Elements for Line Current Differential Protection*. Schweitzer Engineering Laboratories, Inc., 2006.
- iii. MILLER, H.; BURGER, J.; FISCHER, N.; KASZTENNY, B., *Modern Line Current Differential Protection Solutions*. Schweitzer Engineering Laboratories, Inc., 2010.
- iv. BENMOUYAL, G., *The Trajectories of Line Current Differential Faults in the Alpha Plane*. Schweitzer Engineering Laboratories, Inc., 2011.
- v. XUE, Y.; FINNEY, D.; LE, B., Charging Current in Long Lines and High-Voltage Cables Protection Application Considerations. Schweitzer Engineering Laboratories, Inc., 2012.

8. Calendário

agosto							
D	S	Т	Q	Q	S	S	
					1	2	
3	4	5	6	7	8	9	
10	11	12	13	14	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	
31							

	setembro						
D	S	Т	Q	Q	S	S	
	1	2	З	4	5	6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	
21	22	23	24	25	26	27	
28	29	30					

outubro							
D	S	Т	Q	Q	S	S	
			1	2	3	4	
5	6	7	8	9	10	11	
12	13	14	15	16	17	18	
19	20	21	22	23	24	25	
26	27	28	29	30	31		

novembro							
D	S	Т	Q	Q	S	S	
						1	
2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	
30							

	dezembro							
D	S	Т	Q	Q	S	S		
	1	2	3	4	5	6		
7	8	9	10	11	12	13		
14	15	16	17	18	19	20		
21	22	23	24	25	26	27		
28	29	30	31					

Dias normais de aula

9. Planejamento de Aula

Data	Dia	Aula	Conteúdo
19/ago	terça-feira	1	Filosofia da proteção de sistemas elétricos de potência
21/ago	quinta-feira	2	Introdução à proteção numérica microprocessada de sistemas elétricos de potência
26/ago	terça-feira	3	Introdução à proteção numérica microprocessada de sistemas elétricos de potência
28/ago	quinta-feira	4	Introdução à proteção numérica microprocessada de sistemas elétricos de potência
02/set	terça-feira	5	Transformador de corrente para serviços de proteção
04/set	quinta-feira	6	Transformador de corrente para serviços de proteção
09/set	terça-feira	7	Fundamentos da proteção diferencial numérica
11/set	quinta-feira	8	Fundamentos da proteção diferencial numérica
16/set	terça-feira	9	Proteção diferencial numérica de transformadores de potência
18/set	quinta-feira	10	Proteção diferencial numérica de transformadores de potência
30/set	terça-feira	11	Proteção diferencial numérica de transformadores de potência
02/out	quinta-feira	12	Proteção diferencial numérica de transformadores de potência
07/out	terça-feira	13	Proteção diferencial numérica de transformadores de potência
09/out	quinta-feira	14	Proteção diferencial numérica de transformadores de potência
14/out	terça-feira	15	Proteção diferencial numérica de transformadores de potência
16/out	quinta-feira	16	Proteção diferencial numérica de transformadores de potência
21/out	terça-feira	17	Proteção diferencial numérica de barramentos
23/out	quinta-feira	18	Proteção diferencial numérica de barramentos
04/nov	terça-feira	19	Proteção diferencial numérica de barramentos
06/nov	quinta-feira	20	Proteção diferencial numérica de barramentos
11/nov	terça-feira	21	Proteção diferencial numérica de barramentos
13/nov	quinta-feira	22	Proteção diferencial numérica de barramentos
18/nov	terça-feira	23	Proteção diferencial numérica de barramentos
20/nov	quinta-feira	24	Proteção diferencial numérica de linhas de transmissão
25/nov	terça-feira	25	Proteção diferencial numérica de linhas de transmissão
27/nov	quinta-feira	26	Proteção diferencial numérica de linhas de transmissão
02/dez	terça-feira	27	Proteção diferencial numérica de linhas de transmissão
04/dez	quinta-feira	28	Proteção diferencial numérica de linhas de transmissão
09/dez	terça-feira	29	Proteção diferencial numérica de linhas de transmissão
11/dez	quinta-feira	30	Proteção diferencial numérica de linhas de transmissão